Published in

Springer, Journal of Solid State Electrochemistry, 2024

DOI: 10.1007/s10008-024-05865-y

Links

Tools

Export citation

Search in Google Scholar

Li concentration change around Cu/LiPON interface measured by TOF-ERDA

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractLithium metal is a promising anode material for the development of advanced all-solid-state batteries (ASSBs) with high energy density. Among the various solid electrolytes, lithium phosphorus oxynitride glass electrolyte (LiPON) is notable for facilitating stable Li plating-stripping reactions in ASSBs employing Li metal. The aim of this study is to examine the Li/LiPON interface, with a specific emphasis on the reductive decomposition of LiPON near this interface. We employed time-of-flight elastic recoil detection analysis (TOF-ERDA) to assess changes in Li concentration around the Cu/LiPON interface immediately prior to the Li plating reaction. Our electrochemical measurements indicate that critical decomposition of LiPON occurs when the voltage at the Cu electrode is reduced to 0.1 V vs. Li/Li+ at 25 °C, resulting in the in situ formation of Li3P operating at 0.7 V vs. Li/Li+ as an anode material. The TOF-ERDA findings reveal that this decomposition reaction results in a layer with partial decomposition (ranging from 5 to 25% on average) extending up to approximately 30 nm from the Cu/LiPON interface. This insight is vital for enhancing the design and performance of ASSBs. Graphical abstract