Published in

BMJ Publishing Group, Journal of Neurology, Neurosurgery and Psychiatry, p. jnnp-2024-333413, 2024

DOI: 10.1136/jnnp-2024-333413

Links

Tools

Export citation

Search in Google Scholar

Dynamics of synaptic damage in severe traumatic brain injury revealed by cerebrospinal fluid SNAP-25 and VILIP-1

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BackgroundBiomarkers of neuronal, glial cells and inflammation in traumatic brain injury (TBI) are available but they do not specifically reflect the damage to synapses, which represent the bulk volume of the brain. Experimental models have demonstrated extensive involvement of synapses in acute TBI, but biomarkers of synaptic damage in human patients have not been explored.MethodsSingle-molecule array assays were used to measure synaptosomal-associated protein-25 (SNAP-25) and visinin-like protein 1 (VILIP-1) (along with neurofilament light chain (NFL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), glial fibrillar acidic protein (GFAP), interleukin-6 (IL-6) and interleukin-8 (IL-8)) in ventricular cerebrospinal fluid (CSF) samples longitudinally acquired during the intensive care unit (ICU) stay of 42 patients with severe TBI or 22 uninjured controls.ResultsCSF levels of SNAP-25 and VILIP-1 are strongly elevated early after severe TBI and decline in the first few days. SNAP-25 and VILIP-1 correlate with inflammatory markers at two distinct timepoints (around D1 and then again at D5) in follow-up. SNAP-25 and VILIP-1 on the day-of-injury have better sensitivity and specificity for unfavourable outcome at 6 months than NFL, UCH-L1 or GFAP. Later elevation of SNAP-25 was associated with poorer outcome.ConclusionSynaptic damage markers are acutely elevated in severe TBI and predict long-term outcomes, as well as, or better than, markers of neuroaxonal injury. Synaptic damage correlates with initial injury and with a later phase of secondary inflammatory injury.