Published in

Wiley, Advanced Engineering Materials, 17(25), 2023

DOI: 10.1002/adem.202300706

Links

Tools

Export citation

Search in Google Scholar

A Janus Molecule for Screen‐Printable Conductive Carbon Ink for Composites with Superior Stretchability

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inspired by decades of research in the compatibilization of fillers into elastomeric composites for high‐performance materials, a novel polyurethane‐based stretchable carbon ink is created by taking advantage of a Janus molecule, 2‐(2,5‐dimethyl‐1H‐pyrrol‐1‐yl)propane‐1,3‐diol (serinol pyrrole, SP). SP is used to functionalize the carbon and comonomer in the polymer phase. The use of SPs in both the organic and inorganic phases results in an improved interaction between the two phases. When printed, the functionalized material has a factor 1.5 lower resistance‐strain dependence when compared to its unfunctionalized analogue. This behavior is superior to commercially available carbon inks. To demonstrate the suitability of ink in an industrial application, an all‐printed, elastomer‐based force sensor is fabricated. This “pyrrole methodology” is scalable and broadly applicable, laying the foundation for the realization of printed functionalities with improved electromechanical performance.