Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(15), 2024

DOI: 10.1038/s41467-024-47764-w

Links

Tools

Export citation

Search in Google Scholar

DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractNeuroscience findings emphasize the role of dendritic branching in neocortical pyramidal neurons for non-linear computations and signal processing. Dendritic branches facilitate temporal feature detection via synaptic delays that enable coincidence detection (CD) mechanisms. Spiking neural networks highlight the significance of delays for spatio-temporal pattern recognition in feed-forward networks, eliminating the need for recurrent structures. Here, we introduce DenRAM, a novel analog electronic feed-forward spiking neural network with dendritic compartments. Utilizing 130 nm technology integrated with resistive RAM (RRAM), DenRAM incorporates both delays and synaptic weights. By configuring RRAMs to emulate bio-realistic delays and exploiting their heterogeneity, DenRAM mimics synaptic delays and efficiently performs CD for pattern recognition. Hardware-aware simulations on temporal benchmarks show DenRAM’s robustness against hardware noise, and its higher accuracy over recurrent networks. DenRAM advances temporal processing in neuromorphic computing, optimizes memory usage, and marks progress in low-power, real-time signal processing