Published in

Journal of Geophysical Research: Machine Learning and Computation, 2(1), 2024

DOI: 10.1029/2024jh000160

Links

Tools

Export citation

Search in Google Scholar

Empowering Machine Learning Forecasting of Labquake Using Event‐Based Features and Clustering Characteristics

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

AbstractFollowing recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission (AE) catalogs to empower ML‐based forecasting. The AE data were recorded during laboratory stick‐slip experiments on granite samples cut by rough faults. Based on the features computed for a past time window, a random forest (RF) classifier is used to forecast the occurrence of a large magnitude event (MAE > 3.5) in the next time window. Event‐based features allow us to associate informative time‐space characteristics to each feature and nearest‐neighbor clustering analysis enables us to separate background and clustered seismicity and train individual models. The results show that the separation of AEs enhances the forecasting accuracy from 73.2% for the entire catalog up to 82.1% and 89.0% if background and clustered events are used separately. The presented new approach may be upscaled for applications to forecast tectonic earthquakes.