Dissemin is shutting down on January 1st, 2025

Published in

JURNAL SINTAK, 2(2), p. 71-82, 2024

DOI: 10.62375/jsintak.v2i2.249

Links

Tools

Export citation

Search in Google Scholar

Life Expectancy Prediction Using Decision Tree, Random Forest, Gradient Boosting, and XGBoost Regressions

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Angka harapan hidup menggambarkan rata-rata lamanya waktu seseorang hidup sejak lahir di dunia. Angka harapan hidup menjadi salah satu aspek dalam menentukan indeks pembangunan manusia. Semakin tinggi Angka harapan hidup maka akan semakin tinggi nilai IPM. Tujuan penelitian ini adalah memprediksi angka harapan hidup melalui model yang paling akurat dengan menggunakan model decision tree regression, random forest regression, gradient boosting regression, dan XGBoost regression, serta analisis variabel penjelas yang paling mempengaruhi angka harapan hidup. Data yang digunakan dalam penelitian ini adalah dataset Global Country Information Dataset 2023. Data diperoleh dari situs Kaggle. Berdasarkan analisis diperoleh bahwa model random forest regression menunjukkan kinerja yang lebih unggul dalam memprediksi hasil, yang ditunjukkan dengan nilai RMSE yang lebih rendah dan nilai R² yang lebih tinggi. Kematian bayi dan rasio kematian ibu secara konsisten diidentifikasi sebagai prediktor yang signifikan di semua model, sedangkan populasi merupakan prediktor yang kurang memprengaruhi angka harapan hidup.