Published in

American Institute of Physics, Journal of Applied Physics, 19(133), 2023

DOI: 10.1063/5.0149872

Links

Tools

Export citation

Search in Google Scholar

Electric-dipole and magnetic absorption in TbFeO3 single crystals in the THz–IR range

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Various mechanisms of absorption including both electric-dipole excitations and magnetic ones in a broadband (5–5000 cm−1) polarized transmission and reflection spectra were studied in orthoferrite TbFeO3 using a coherent submillimeter, pulsed THz, and IR Fourier transform spectroscopy. The classical oscillator model and generalized four-parameter model were used to analyze the spectra obtained, and the parameters of the models were determined. We analyzed main absorption processes, which include contributions of both phonons and multi-phonon processes as well as electron transitions in Tb3+ ions and two antiferromagnetic resonance modes in the Fe subsystem. As a result, the spectra of real and imaginary parts of permeability and permittivity were obtained. A distinctive feature of the studied electrodynamic response in TbFeO3 is a significant absorption in the THz range due to multi-phonon processes, which exceeds optical phonon contribution by an order of magnitude at room temperature.