Published in

American Association for the Advancement of Science, Science Advances, 22(10), 2024

DOI: 10.1126/sciadv.adl0320

Links

Tools

Export citation

Search in Google Scholar

Ribonuclease inhibitor and angiogenin system regulates cell type–specific global translation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Translation of mRNAs is a fundamental process that occurs in all cell types of multicellular organisms. Conventionally, it has been considered a default step in gene expression, lacking specific regulation. However, recent studies have documented that certain mRNAs exhibit cell type–specific translation. Despite this, it remains unclear whether global translation is controlled in a cell type–specific manner. By using human cell lines and mouse models, we found that deletion of the ribosome-associated protein ribonuclease inhibitor 1 (RNH1) decreases global translation selectively in hematopoietic-origin cells but not in the non–hematopoietic-origin cells. RNH1-mediated cell type–specific translation is mechanistically linked to angiogenin-induced ribosomal biogenesis. Collectively, this study unravels the existence of cell type–specific global translation regulators and highlights the complex translation regulation in vertebrates.