Published in

Wiley Open Access, Advanced Science, 2024

DOI: 10.1002/advs.202401559

Links

Tools

Export citation

Search in Google Scholar

Thermodynamics‐Guided High‐Throughput Discovery of Eutectic High‐Entropy Alloys for Rapid Solidification

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractExcellent castability, significantly refined microstructure, and good mechanical properties make eutectic high‐entropy alloys (EHEAs) a natural fit for rapid solidification processes, e.g., additive manufacturing. Previous investigations have focused on developing EHEAs through trial and error and mixing known binary eutectic materials. However, eutectic compositions obtained from near‐equilibrium conditions do not guarantee a fully eutectic microstructure under rapid solidifications. In this work, a thermodynamically guided high‐throughput framework is proposed to design EHEAs for rapid solidification. Empirical formulas derived from past experimental observations and thermodynamic computations are applied and considered phase growth kinetics under rapid solidification (skewed phase diagram). The designed alloy candidate, Co25.6Fe17.9Ni22.4Cr19.1Ta8.9Al6.1 (wt.%), contains nanostructured eutectic lamellar and shows a high Vickers hardness of 675 Hv. In addition to this specific composition, the alloy design toolbox enables the development of new EHEAs for rapid solidification without the limitation of previous knowledge.