Published in

Wiley, ChemSusChem, 10(17), 2024

DOI: 10.1002/cssc.202301452

Links

Tools

Export citation

Search in Google Scholar

Tuning Carbon Dioxide Reduction Reaction Selectivity of Bi Single‐Atom Electrocatalysts with Controlled Coordination Environments

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractControl over product selectivity of the electrocatalytic CO2 reduction reaction (CO2RR) is a crucial challenge for the sustainable production of carbon‐based chemical feedstocks. In this regard, single‐atom catalysts (SACs) are promising materials due to their tunable coordination environments, which could enable tailored catalytic activities and selectivities, as well as new insights into structure‐activity relationships. However, direct evidence for selectivity control via systematic tuning of the SAC coordination environment is scarce. In this work, we have synthesized two differently coordinated Bi SACs anchored to the same host material (carbon black) and characterized their CO2RR activities and selectivities. We find that oxophilic, oxygen‐coordinated Bi atoms produce HCOOH, while nitrogen‐coordinated Bi atoms generate CO. Importantly, use of the same support material assured that alternation of the coordination environment is the dominant factor for controlling the CO2RR product selectivity. Overall, this work demonstrates the structure‐activity relationship of Bi SACs, which can be utilized to establish control over CO2RR product distributions, and highlights the promise for engineering atomic coordination environments of SACs to tune reaction pathways.