Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(14), 2023

DOI: 10.1038/s41467-023-41383-7

Links

Tools

Export citation

Search in Google Scholar

Manipulation of nonlinear optical responses in layered ferroelectric niobium oxide dihalides

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractRealization of highly tunable second-order nonlinear optical responses, e.g., second-harmonic generation and bulk photovoltaic effect, is critical for developing modern optical and optoelectronic devices. Recently, the van der Waals niobium oxide dihalides are discovered to exhibit unusually large second-harmonic generation. However, the physical origin and possible tunability of nonlinear optical responses in these materials remain to be unclear. In this article, we reveal that the large second-harmonic generation in NbOX2 (X = Cl, Br, and I) may be partially contributed by the large band nesting effect in different Brillouin zone. Interestingly, the NbOCl2 can exhibit dramatically different strain-dependent bulk photovoltaic effect under different polarized light, originating from the light-polarization-dependent orbital transitions. Importantly, we achieve a reversible ferroelectric-to-antiferroelectric phase transition in NbOCl2 and a reversible ferroelectric-to-paraelectric phase transition in NbOI2 under a certain region of external pressure, accompanied by the greatly tunable nonlinear optical responses but with different microscopic mechanisms. Our study establishes the interesting external-field tunability of NbOX2 for nonlinear optical device applications.