Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 22(120), 2023

DOI: 10.1073/pnas.2301725120

Links

Tools

Export citation

Search in Google Scholar

Cryo-EM structure of the Mon1–Ccz1–RMC1 complex reveals molecular basis of metazoan RAB7A activation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Understanding of the evolution of metazoans from their unicellular ancestors is a fundamental question in biology. In contrast to fungi which utilize the Mon1–Ccz1 dimeric complex to activate the small GTPase RAB7A, metazoans rely on the Mon1–Ccz1–RMC1 trimeric complex. Here, we report a near-atomic resolution cryogenic-electron microscopy structure of the Drosophila Mon1–Ccz1–RMC1 complex. RMC1 acts as a scaffolding subunit and binds to both Mon1 and Ccz1 on the surface opposite to the RAB7A-binding site, with many of the RMC1-contacting residues from Mon1 and Ccz1 unique to metazoans, explaining the binding specificity. Significantly, the assembly of RMC1 with Mon1–Ccz1 is required for cellular RAB7A activation, autophagic functions and organismal development in zebrafish. Our studies offer a molecular explanation for the different degree of subunit conservation across species, and provide an excellent example of how metazoan-specific proteins take over existing functions in unicellular organisms.