Published in

MDPI, Journal of Fungi, 10(9), p. 976, 2023

DOI: 10.3390/jof9100976

Links

Tools

Export citation

Search in Google Scholar

Interaction between a Martian Regolith Simulant and Fungal Organic Acids in the Biomining Perspective

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of this study was to evaluate the potential of Aspergillus tubingensis in extracting metals from rocks simulating Martian regolith through biomining. The results indicated that the fungal strain produced organic acids, particularly oxalic acid, in the first five days, leading to a rapid reduction in the pH of the culture medium. This acidic medium is ideal for bioleaching, a process that employs acidolysis and complexolysis to extract metals from rocks. Additionally, the strain synthesized siderophores, molecules capable of mobilizing metals from solid matrices, as verified by the blue CAS colorimetric test. The secretion of siderophores in the culture medium proved advantageous for biomining. The siderophores facilitated the leaching of metal ions, such as manganese, from the rock matrix into the acidified water solution. In addition, the susceptibility of the Martian regolith simulant to the biomining process was assessed by determining the particle size distribution, acid composition after treatment, and geochemical composition of the rock. Although the preliminary results demonstrate successful manganese extraction, further research is required to optimize the extraction technique. To conclude, the A. tubingensis strain exhibits promising abilities in extracting metals from rocks through biomining. Its use could prove useful in future in situ mining operations and environmental remediation efforts. Further research is required to optimize the process and evaluate its feasibility on a larger scale.