Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Electrochem, 2(5), p. 178-212, 2024

DOI: 10.3390/electrochem5020012

Links

Tools

Export citation

Search in Google Scholar

Ion-Selective Electrodes in the Food Industry: Development Trends in the Potentiometric Determination of Ionic Pollutants

Journal article published in 2024 by Antonio Ruiz-Gonzalez ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Food quality assessment is becoming a global priority due to population growth and the rise of ionic pollutants derived from anthropogenic sources. However, the current methods used to quantify toxic ions are expensive and their operation is complex. Consequently, there is a need for affordable and accessible methods for the accurate determination of ion concentrations in food. Electrochemical sensors based on potentiometry represent a promising approach in this field, with the potential to overcome limitations of the currently available systems. This review summarizes the current advances in the electrochemical quantification of heavy metals and toxic anions in the food industry using potentiometric sensors. The healthcare impact of common heavy metal contaminants (Cd2+, Hg2+, Pb2+, As3+) and anions (ClO4−, F−, HPO4−, SO42−, NO3−, NO2−) is discussed, alongside current regulations, and gold standard methods for analysis. Sensor performances are compared to current benchmarks in terms of selectivity and the limit of detection. Given the complexity of food samples, the percentage recovery values (%) and the methodologies employed for ion extraction are also described. Finally, a summary of the challenges and future directions of the field is provided. An overview of technologies that can overcome the limitations of current electrochemical sensors is shown, including new extraction methods for ions in food.