Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Physics in Medicine & Biology, 11(69), p. 115010, 2024

DOI: 10.1088/1361-6560/ad46dd

Links

Tools

Export citation

Search in Google Scholar

Time conditioning for arbitrary contrast phase generation in interventional computed tomography

Journal article published in 2024 by Mark A. Pinnock ORCID, Yipeng Hu ORCID, Steve Bandula ORCID, Dean C. Barratt ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Minimally invasive ablation techniques for renal cancer are becoming more popular due to their low complication rate and rapid recovery period. Despite excellent visualisation, one drawback of the use of computed tomography (CT) in these procedures is the requirement for iodine-based contrast agents, which are associated with adverse reactions and require a higher x-ray dose. The purpose of this work is to examine the use of time information to generate synthetic contrast enhanced images at arbitrary points after contrast agent injection from non-contrast CT images acquired during renal cryoablation cases. To achieve this, we propose a new method of conditioning generative adversarial networks with normalised time stamps and demonstrate that the use of a HyperNetwork is feasible for this task, generating images of competitive quality compared to standard generative modelling techniques. We also show that reducing the receptive field can help tackle challenges in interventional CT data, offering significantly better image quality as well as better performance when generating images for a downstream segmentation task. Lastly, we show that all proposed models are robust enough to perform inference on unseen intra-procedural data, while also improving needle artefacts and generalising contrast enhancement to other clinically relevant regions and features.