Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astronomical Journal, 2(166), p. 49, 2023

DOI: 10.3847/1538-3881/acdee8

Links

Tools

Export citation

Search in Google Scholar

A Mini-Neptune Orbiting the Metal-poor K Dwarf BD+29 2654

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We report the discovery and Doppler mass measurement of a 7.4 days 2.3 R mini-Neptune around a metal-poor K dwarf BD+29 2654 (TOI-2018). Based on a high-resolution Keck/HIRES spectrum, the Gaia parallax, and multiwavelength photometry from the UV to the mid-infrared, we found that the host star has T eff = 4174 − 42 + 34 K, log g = 4.62 − 0.03 + 0.02 , [Fe/H] = − 0.58 ± 0.18, M * = 0.57 ± 0.02 M , and R * = 0.62 ± 0.01 R . Precise Doppler measurements with Keck/HIRES revealed a planetary mass of M p = 9.2 ± 2.1 M for TOI-2018 b. TOI-2018 b has a mass and radius that are consistent with an Earthlike core, with a ∼1%-by-mass hydrogen/helium envelope or an ice–rock mixture. The mass of TOI-2018 b is close to the threshold for runaway accretion and hence giant planet formation. Such a threshold is predicted to be around 10M or lower for a low-metallicity (low-opacity) environment. If TOI-2018 b is a planetary core that failed to undergo runaway accretion, it may underline the reason why giant planets are rare around low-metallicity host stars (one possibility is their shorter disk lifetimes). With a K-band magnitude of 7.1, TOI-2018 b may be a suitable target for transmission spectroscopy with the James Webb Space Telescope. The system is also amenable to metastable Helium observation; the detection of a Helium exosphere would help distinguish between a H/He-enveloped planet and a water world.