Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 2024

DOI: 10.1210/clinem/dgae080

Links

Tools

Export citation

Search in Google Scholar

Differential Diagnosis of Post Pancreatitis Diabetes Mellitus Based on Pancreatic and Gut Hormone Characteristics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Context Distinguishing different types of diabetes is important in directing optimized treatment strategies and correlated epidemiological studies. Objective Through detailed analysis of hormone responses to mixed meal tolerance test (MMTT), we aimed to find representing characteristics of post-acute pancreatitis diabetes mellitus (PPDM-A) and post-chronic pancreatitis diabetes mellitus (PPDM-C). Methods Participants with PPDM-A, PPDM-C, type 1 diabetes, type 2 diabetes, and normal controls (NCs) underwent MMTT. Fasting and postprandial responses of serum glucose, C-peptide, insulin, glucagon, pancreatic polypeptide (PP), ghrelin, gastric inhibitory peptide (GIP), glucagon like peptide-1 (GLP-1), and peptide YY (PYY) were detected and compared among different groups. Focused analysis on calculated insulin sensitivity and secretion indices were performed to determine major causes of hyperglycemia in different conditions. Results Participants with PPDM-A were characterized by increased C-peptide, insulin, glucagon, and PP, but decreased ghrelin, GIP, and PYY compared with NCs. Patients with PPDM-C showed secretion insufficiency of C-peptide, insulin, ghrelin, and PYY, and higher postprandial responses of glucagon and PP than NCs. In particular, both fasting and postprandial levels of ghrelin in PPDM-C were significantly lower than other diabetes groups. PYY responses in patients with PPDM-A and PPDM-C were markedly reduced. Additionally, the insulin sensitivity of PPDM-A was decreased, and the insulin secretion for PPDM-C was decreased. Conclusion Along with the continuum from acute to chronic pancreatitis, the pathological mechanism of PPDM changes from insulin resistance to insulin deficiency. Insufficient PYY secretion is a promising diagnostic marker for distinguishing PPDM from type 1 and type 2 diabetes. Absent ghrelin secretion to MMTT may help identify PPDM-C.