Published in

Oxford University Press, SLEEP, 6(47), 2024

DOI: 10.1093/sleep/zsae053

Links

Tools

Export citation

Search in Google Scholar

Changes in electroencephalographic microstates between evening and morning are associated with overnight sleep slow waves in healthy individuals

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Study Objectives Microstates are semi-stable voltage topographies that account for most of electroencephalogram (EEG) variance. However, the impact of time of the day and sleep on microstates has not been examined. To address this gap, we assessed whether microstates differed between the evening and morning and whether sleep slow waves correlated with microstate changes in healthy participants. Methods Forty-five healthy participants were recruited. Each participant underwent 6 minutes of resting state EEG recordings in the evening and morning, interleaved by sleep EEGs. Evening-to-morning changes in microstate duration, coverage, and occurrence were assessed. Furthermore, correlation between microstate changes and sleep slow-wave activity (SWA) and slow-wave density (SWD) were performed. Results Two-way ANOVAs with microstate class (A, B, C, and D) and time (evening and morning) revealed significant microstate class × time interaction for duration (F(44) = 5.571, p = 0.002), coverage (F(44) = 6.833, p = 0.001), and occurrence (F(44) = 5.715, p = 0.002). Post hoc comparisons showed significant effects for microstate C duration (padj = 0.048, Cohen’s d = −0.389), coverage (padj = 0.002, Cohen’s d = −0.580), and occurrence (padj = 0.002, Cohen’s d = -0.606). Topographic analyses revealed inverse correlations between SWD, but not SWA, and evening-to-morning changes in microstate C duration (r = −0.51, padj = 0.002), coverage (r = −0.45, padj = 0.006), and occurrence (r = −0.38, padj = 0.033). Conclusions Microstate characteristics showed significant evening-to-morning changes associated with, and possibly regulated by, sleep slow waves. These findings suggest that future microstate studies should control for time of day and sleep effects.