Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Geophysical Research. Space Physics, 8(128), 2023

DOI: 10.1029/2022ja031259

Links

Tools

Export citation

Search in Google Scholar

Why Are Some Solar Wind Pressure Pulses Followed by Geomagnetic Storms?

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractRapid increases in solar wind dynamic pressure, known as solar wind pressure pulses, compress the Earth's magnetosphere and can rapidly restructure the electrodynamics within. The propagation of pressure pulse effects into the magnetosphere is known as a geomagnetic sudden commencement (SC). SCs can be further subdivided into compressions which are rapidly followed by a geomagnetic storm (a sudden storm commencement, SSC) and those which are not (a sudden impulse, SI). In this paper, SSCs and SIs are compared and contrasted, and we examine in particular the differences between the pressure pulses that drive SSCs/SIs, and explore the physical conditions of the magnetosphere before pressure pulse arrival. Firstly, it is shown that SSCs are more likely to be driven by pressure pulses with higher magnitude and/or shorter rise time. Secondly, the magnetosphere is primed by stronger driving conditions and higher geomagnetic activity prior to SSCs than SIs. Finally, there is a solar cycle dependence in the occurrence and magnitude of solar wind pressure pulses.