Published in

Nature Research, Communications Physics, 1(6), 2023

DOI: 10.1038/s42005-023-01286-x

Links

Tools

Export citation

Search in Google Scholar

Spin fluctuations from Bogoliubov Fermi surfaces in the superconducting state of S-substituted FeSe

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe study of the iron-based superconductor, FeSe, has resulted in various topics, such as the interplay among superconductivity, nematicity, and magnetism, Bardeen-Cooper-Schrieffer Bose-Einstein-condensation (BCS-BEC) crossover, and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductivity. Recently, topologically protected nodal Fermi surfaces, referred to as Bogoliubov Fermi surfaces (BFSs), have garnered much attention. A theoretical model for the S-substituted FeSe system demonstrated that BFSs can manifest under the conditions of spin-orbit coupling, multi-band systems, and superconductivity with time-reversal symmetry breaking. Here we report the observation of spin fluctuations originating from BFSs in the superconducting (SC) state via 77Se-nuclear magnetic resonance measurements to 100 mK. In a heavily S-substituted FeSe, we found an anomalous enhancement of low-energy spin fluctuations deep in the SC state, which cannot be explained by an impurity effect. Such unusual behavior implies the presence of significant spin fluctuations of Bogoliubov quasiparticles, which are associated with possible nesting properties between BFSs.