Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 1(961), p. 90, 2024

DOI: 10.3847/1538-4357/ad0f17

Links

Tools

Export citation

Search in Google Scholar

Protostellar Chimney Flues: Are Jets and Outflows Lifting Submillimeter Dust Grains from Disks into Envelopes?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Low dust opacity spectral indices (β < 1) measured in the inner envelopes of class 0/I young stellar objects (age ∼104–5 yr) have been interpreted as the presence of (sub-)millimeter dust grains in these environments. The density conditions and the lifetimes of collapsing envelopes have proven unfavorable for the growth of solids up to millimeter sizes. As an alternative, magnetohydrodynamical simulations suggest that protostellar jets and outflows might lift grains from circumstellar disks and diffuse them in the envelope. We reframe available data for the CALYPSO sample of Class 0/I sources and show tentative evidence for an anticorrelation between the value of β 1–3 mm measured in the inner envelope and the mass-loss rate of their jets and outflows, supporting a connection between the two. We discuss the implications that dust transport from the disk to the inner envelope might have for several aspects of planet formation. Finally, we urge for more accurate measurements of both correlated quantities and the extension of this work to larger samples, necessary to further test the transport scenario.