Dissemin is shutting down on January 1st, 2025

Published in

The Electrochemical Society, Journal of The Electrochemical Society, 10(170), p. 100531, 2023

DOI: 10.1149/1945-7111/ad0180

Links

Tools

Export citation

Search in Google Scholar

In-Depth Investigation of Manganese Dioxide as Pseudocapacitive Electrode in Lithium- and Sodium-Doped Ionic Liquids

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigate the contribution of pseudocapacitance to the overall capacitance of MnO2 electrodes in pure and alkaline-doped ionic liquids via two spectroscopic methods: step potential electrochemical spectroscopy (SPECS) and in situ Raman spectroscopy. For both characterization methods, thin-film electrodes of birnessite-like amorphous MnO2 were cycled in Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, pure or doped with lithium or sodium. SPECS allows determination of the influence of the electrolyte composition on the electrochemical behavior of the MnO2 electrodes. Pseudocapacitive charge storage can account for over half of the total capacitance with alkaline-doped ionic liquids. In situ Raman spectroscopy provided insight into the reversible ion intercalation in the MnO2 structure, which appears to be controlled by EMIm+ cations. These findings are supported by density functional theory (DFT) calculations, which further help unveil the charge storage mechanism in birnessite-like amorphous MnO2 thin films operated in pure and alkaline-doped ionic liquids.