Published in

American Heart Association, Hypertension, 1(81), p. 34-44, 2024

DOI: 10.1161/hypertensionaha.123.19939

Links

Tools

Export citation

Search in Google Scholar

Basic Mechanisms of Brain Injury and Cognitive Decline in Hypertension

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dementia affects almost 50 million adults worldwide, and remains a major cause of death and disability. Hypertension is a leading risk factor for dementia, including Alzheimer disease and Alzheimer disease–related dementias. Although this association is well-established, the mechanisms underlying hypertension-induced cognitive decline remain poorly understood. By exploring the mechanisms mediating the detrimental effects of hypertension on the brain, studies have aimed to provide therapeutic insights and strategies on how to protect the brain from the effects of blood pressure elevation. In this review, we focus on the basic mechanisms contributing to the cerebrovascular adaptions to elevated blood pressure and hypertension-induced microvascular injury. We also assess the cellular mechanisms of neurovascular unit dysfunction, focusing on the premise that cognitive impairment ensues when the dynamic metabolic demands of neurons are not met due to neurovascular uncoupling, and summarize cognitive deficits across various rodent models of hypertension as a resource for investigators. Despite significant advances in antihypertensive therapy, hypertension remains a critical risk factor for cognitive decline, and several questions remain about the development and progression of hypertension-induced cognitive impairment.