Published in

MDPI, Journal of Personalized Medicine, 12(13), p. 1642, 2023

DOI: 10.3390/jpm13121642

Links

Tools

Export citation

Search in Google Scholar

Synthetic 3D Spinal Vertebrae Reconstruction from Biplanar X-rays Utilizing Generative Adversarial Networks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Computed tomography (CT) offers detailed insights into the internal anatomy of patients, particularly for spinal vertebrae examination. However, CT scans are associated with higher radiation exposure and cost compared to conventional X-ray imaging. In this study, we applied a Generative Adversarial Network (GAN) framework to reconstruct 3D spinal vertebrae structures from synthetic biplanar X-ray images, specifically focusing on anterior and lateral views. The synthetic X-ray images were generated using the DRRGenerator module in 3D Slicer by incorporating segmentations of spinal vertebrae in CT scans for the region of interest. This approach leverages a novel feature fusion technique based on X2CT-GAN to combine information from both views and employs a combination of mean squared error (MSE) loss and adversarial loss to train the generator, resulting in high-quality synthetic 3D spinal vertebrae CTs. A total of n = 440 CT data were processed. We evaluated the performance of our model using multiple metrics, including mean absolute error (MAE) (for each slice of the 3D volume (MAE0) and for the entire 3D volume (MAE)), cosine similarity, peak signal-to-noise ratio (PSNR), 3D peak signal-to-noise ratio (PSNR-3D), and structural similarity index (SSIM). The average PSNR was 28.394 dB, PSNR-3D was 27.432, SSIM was 0.468, cosine similarity was 0.484, MAE0 was 0.034, and MAE was 85.359. The results demonstrated the effectiveness of this approach in reconstructing 3D spinal vertebrae structures from biplanar X-rays, although some limitations in accurately capturing the fine bone structures and maintaining the precise morphology of the vertebrae were present. This technique has the potential to enhance the diagnostic capabilities of low-cost X-ray machines while reducing radiation exposure and cost associated with CT scans, paving the way for future applications in spinal imaging and diagnosis.