Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Environments, 5(11), p. 100, 2024

DOI: 10.3390/environments11050100

Links

Tools

Export citation

Search in Google Scholar

Integrating Wastewater-Based Epidemiology and Mobility Data to Predict SARS-CoV-2 Cases

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Wastewater-based epidemiology has garnered considerable research interest, concerning the COVID-19 pandemic. Restrictive public health interventions and mobility limitations are measures to avert a rising case prevalence. The current study integrates WBE monitoring strategies, Google mobility data, and restriction information to assess the epidemiological development of COVID-19. Various SARIMAX models were employed to predict SARS-CoV-2 cases in Liechtenstein and two Austrian regions. This study analyzes four primary strategies for examining the progression of the pandemic waves, described as follows: 1—a univariate model based on active cases; 2—a multivariate model incorporating active cases and WBE data; 3—a multivariate model considering active cases and mobility data; and 4—a sensitivity analysis of WBE and mobility data incorporating restriction policies. Our key discovery reveals that, while WBE for SARS-CoV-2 holds immense potential for monitoring COVID-19 on a societal level, incorporating the analysis of mobility data and restriction policies enhances the precision of the trained models in predicting the state of public health during the pandemic.