Published in

IOP Publishing, Journal of Instrumentation, 06(18), p. P06018, 2023

DOI: 10.1088/1748-0221/18/06/p06018

Links

Tools

Export citation

Search in Google Scholar

Twelve-crystal prototype of Li<sub>2</sub>MoO<sub>4</sub> scintillating bolometers for CUPID and CROSS experiments

Journal article published in 2023 by K. Alfonso, A. Armatol, C. Augier, F. T. Avignone, O. Azzolini, M. Balata, I. C. Bandac, A. S. Barabash, G. Bari, A. Barresi, D. Baudin, F. Bellini, G. Benato ORCID, V. Berest, M. Beretta and other authors.
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, μBq/kg, level of the LMO crystals radioactive contamination by 228Th and 226Ra.