Published in

IOP Publishing, Physica Scripta, 2(99), p. 025995, 2024

DOI: 10.1088/1402-4896/ad1fc5

Links

Tools

Export citation

Search in Google Scholar

Numerical modeling of defects induced dark current in halide perovskite X-ray detectors

Journal article published in 2024 by Bin Yang, Xiangfan Xie, Shengqiao Zeng, Bin Xue, Shuang Xiao ORCID, Lihua Qian ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Metal halide perovskites have been widely used in x-ray detection due to their outstanding optoelectronic properties. However, the dark current of perovskite x-ray detectors is not appreciably low for integration on thin-film transistors pixel circuits and thus limits their applications in X-ray imaging. Based on numerical models, we investigate the correlation between the dark current and defects of perovskite x-ray detectors. The deep-level defects are the major factor to induce dark current, which has a proportional relation to the defect density. Compared to deep-level defects, the dark current induced by shallow-level defects depends on both of defect energy level and defect density. At last, simulation results present a guidance to engineer defects with suitable values of density and energy level, which yields desirably low dark current. This work provides implications and theoretical guidance for the optimization of defects in halide perovskites, which is believed to assist the further development of x-ray detectors with a low dark current density.