Published in

European Geosciences Union, Atmospheric Measurement Techniques, 11(16), p. 2865-2888, 2023

DOI: 10.5194/amt-16-2865-2023

Links

Tools

Export citation

Search in Google Scholar

Cloud and precipitation microphysical retrievals from the EarthCARE Cloud Profiling Radar: the C-CLD product

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite mission is a joint endeavour developed by the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) and features a 94 GHz Doppler Cloud Profiling Radar. This paper presents the theoretical basis of the cloud and precipitation microphysics (C-CLD) EarthCARE Level 2 (L2) algorithm. The C-CLD algorithm provides the best estimates of the vertical profiles of water mass content and hydrometeor characteristic size, obtained from radar reflectivity, path-integrated signal attenuation and hydrometeor sedimentation Doppler velocity estimates using optimal estimation (OE) theory. To obtain the forward model relations and the associated uncertainty, an ensemble-based method is used. This ensemble consists of a collection of in situ measured drop size distributions that cover natural microphysical variability. The ensemble mean and standard deviation represent the forward model relations and their microphysics-based uncertainty. The output variables are provided on the joint standard grid horizontal and EarthCARE Level 1b (L1b) vertical grid (1 km along track and 100 m vertically). The OE framework is not applied to liquid-only clouds in drizzle-free and lightly drizzling conditions, where a more statistical approach is preferred.