Published in

American Institute of Physics, Applied Physics Letters, 26(123), 2023

DOI: 10.1063/5.0177864

Links

Tools

Export citation

Search in Google Scholar

Skyrmion qubits: Challenges for future quantum computing applications

Journal article published in 2023 by Christina Psaroudaki ORCID, Elias Peraticos ORCID, Christos Panagopoulos ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Magnetic nano-skyrmions develop quantized helicity excitations, and the quantum tunneling between nano-skyrmions possessing distinct helicities is indicative of the quantum nature of these particles. Experimental methods capable of nondestructively resolving the quantum aspects of topological spin textures, their local dynamical response, and their functionality now promise practical device architectures for quantum operations. With abilities to measure, engineer, and control matter at the atomic level, nano-skyrmions present opportunities to translate ideas into solid-state technologies. Proof-of-concept devices will offer electrical control over the helicity, opening a promising new pathway toward functionalizing collective spin states for the realization of a quantum computer based on skyrmions. This Perspective aims to discuss developments and challenges in this new research avenue in quantum magnetism and quantum information.