Published in

MDPI, Coatings, 5(13), p. 875, 2023

DOI: 10.3390/coatings13050875

Links

Tools

Export citation

Search in Google Scholar

EIS and LEIS Study on In Vitro Corrosion Resistance of Anodic Oxide Nanotubes on Ti–13Zr–13Nb Alloy in Saline Solution

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This work concerns the search for new ways to modify the surface of the biomedical Ti–13Zr–13Nb alloy for applications in regenerative medicine and personalized medicine. Obtained for the first time, oxide nanotubes (ONTs) layers of first-generation (1G) on a Ti–13Zr–13Nb alloy were produced by anodizing in 0.5% HF electrolyte at 20 V for 120 min. The physico-chemical characterization of the obtained bamboo-inspired 1G ONTs was conducted using TEM and ATR-FTIR methods. In vitro corrosion resistance of the 1G ONTs and comparative Ti–13Zr–13Nb substrate in saline solution at 37 °C was conducted by open-circuit potential, Tafel curves, anodic polarization curves, and EIS methods. LEIS and SVET study of local corrosion resistance was also carried out. It was found that surface modification by anodizing of the Ti–13Zr–13Nb alloy under proposed conditions allowed to obtain porous ONTs highly resistant to pitting corrosion. The obtained results give a new insight into the relationship between the morphological parameters of first-generation oxide nanotubes and in vitro corrosion resistance of the Ti–13Zr–13Nb alloy in saline solution at the macro- and microscale.