Published in

American Institute of Physics, AIP Advances, 2(14), 2024

DOI: 10.1063/9.0000789

Links

Tools

Export citation

Search in Google Scholar

Ultrafast spin–orbit torque-induced magnetization switching in a 75°-canted magnetic tunnel junction

Journal article published in 2024 by T. V. A. Nguyen ORCID, H. Naganuma ORCID, H. Honjo ORCID, S. Ikeda ORCID, T. Endoh
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We investigate the switching dynamics of a 75°-canted Spin–orbit torque (SOT) device with an in-plane easy axis using the micro-magnetic simulation. The switching time (τ) is evaluated from the time evolution of the magnetization. The device with a strong out-of-plane magnetic anisotropy (μ0Hkeff = −0.08 T) shows τ = 0.19 ns while a device with a strong in-plane magnetic anisotropy (μ0Hkeff = −0.9 T) shows τ = 0.32 ns. The increase of the damping constant (α) results in the increase of τ for both devices and the sub-nanosecond switching could be retained as α < 0.14 in the device with μ0Hkeff = −0.08 T, while this was achieved as α < 0.04 in the device with μ0Hkeff = −0.9 T. Furthermore when the field-like coefficient (β) is increased, it leads to a decrease in τ, which can be reduced to 0.03 ns by increasing β to 1 in the device with μ0Hkeff = −0.08 T. In order to achieve the same result in the device with μ0Hkeff = −0.9 T, β must be increased to 6. These results indicate a way to achieve ultrafast field-free SOT switching of a few tens of picoseconds in nanometer-sized magnetic tunnel junction (MTJ) devices.