Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal Letters, 2(959), p. L27, 2023

DOI: 10.3847/2041-8213/ad0e06

Links

Tools

Export citation

Search in Google Scholar

CI Traces the Disk Atmosphere in the IM Lup Protoplanetary Disk

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The central star and its energetic radiation fields play a vital role in setting the vertical and radial chemical structure of planet-forming disks. We present observations that, for the first time, clearly reveal the UV-irradiated surface of a protoplanetary disk. Specifically, we spatially resolve the atomic-to-molecular (C i-to-CO) transition in the IM Lup disk with Atacama Large Millimeter/submillimeter Array archival observations of [C i] 3P13P0. We derive a C i emitting height of z/r ≳ 0.5 with emission detected out to a radius of ≈600 au. Compared to other systems with C i heights inferred from unresolved observations or models, the C i layer in the IM Lup disk is at scale heights almost double that of other disks, confirming its highly flared nature. C i arises from a narrow, optically thin layer that is substantially more elevated than that of 12CO (z/r ≈ 0.3–0.4), which allows us to directly constrain the physical gas conditions across the C i-to-CO transition zone. We also compute a radially resolved C i column density profile and find a disk-averaged C i column density of 2 × 1016 cm−2, which is ≈3–20× lower than that of other disks with spatially resolved C i detections. We do not find evidence for vertical substructures or spatially localized deviations in C i due, e.g., to either an embedded giant planet or a photoevaporative wind that have been proposed in the IM Lup disk, but emphasize that deeper observations are required for robust constraints.