Published in

American Astronomical Society, Astrophysical Journal, 1(958), p. 8, 2023

DOI: 10.3847/1538-4357/acf5db

Links

Tools

Export citation

Search in Google Scholar

oMEGACat. I. MUSE Spectroscopy of 300,000 Stars within the Half-light Radius of ω Centauri

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Omega Centauri (ω Cen) is the most massive globular cluster of the Milky Way and has been the focus of many studies that reveal the complexity of its stellar populations and kinematics. However, most previous studies have used photometric and spectroscopic data sets with limited spatial or magnitude coverage, while we aim to investigate it having full spatial coverage out to its half-light radius and stars ranging from the main sequence to the tip of the red giant branch. This is the first paper in a new survey of ω Cen that combines uniform imaging and spectroscopic data out to its half-light radius to study its stellar populations, kinematics, and formation history. In this paper, we present an unprecedented MUSE spectroscopic data set combining 87 new MUSE pointings with previous observations collected from guaranteed time observations. We extract spectra of more than 300,000 stars reaching more than 2 magnitudes below the main-sequence turnoff. We use these spectra to derive metallicity and line-of-sight velocity measurements and determine robust uncertainties on these quantities using repeat measurements. Applying quality cuts we achieve signal-to-noise ratios (S/Ns) of 16.47/73.51 and mean metallicity errors of 0.174/0.031 dex for the main-sequence stars (18 mag <mag F625W < 22 mag) and red giant branch stars (16 mag <mag F625W < 10 mag), respectively. We correct the metallicities for atomic diffusion and identify foreground stars. This massive spectroscopic data set will enable future studies that will transform our understanding of ω Cen, allowing us to investigate the stellar populations, ages, and kinematics in great detail.