Published in

American Institute of Physics, Applied Physics Letters, 4(123), 2023

DOI: 10.1063/5.0152083

Links

Tools

Export citation

Search in Google Scholar

EUV debris mitigation using magnetic nulls

Journal article published in 2023 by B. Y. Israeli ORCID, C. B. Smiet ORCID, M. Simeni Simeni ORCID, A. Diallo ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Next generation EUV sources for photolithography use light produced by laser-produced plasmas (LPP) from ablated tin droplets. A major challenge for extending the lifetime of these devices is mitigating damage caused by deposition of tin debris on the sensitive collection mirror. Especially difficult to stop are high energy (up to 10 keV) highly charged tin ions created in the plasma. Existing solutions include the use of stopping gas, electric fields, and magnetic fields. One common configuration consists of a magnetic field perpendicular to the EUV emission direction, but such a system can result in ion populations that are trapped rather than removed. We investigate a previously unconsidered mitigation geometry consisting of a magnetic null by performing full-orbit integration of the ion trajectories in an EUV system with realistic dimensions and optimize the coil locations for the null configuration. The magnetic null prevents a fraction of ions from hitting the mirror comparable to that of the perpendicular field, but does not trap any ions due to the chaotic nature of ion trajectories that pass close to the null. This technology can potentially improve LPP-based EUV photolithography system efficiency and lifetime and may allow for a different, more efficient formulation of buffer gas.