Published in

European Heart Journal - Imaging Methods and Practice, 1(1), 2023

DOI: 10.1093/ehjimp/qyad012

Links

Tools

Export citation

Search in Google Scholar

Real-time guiding by deep learning during echocardiography to reduce left ventricular foreshortening and measurement variability

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Aims Apical foreshortening leads to an underestimation of left ventricular (LV) volumes and an overestimation of LV ejection fraction and global longitudinal strain. Real-time guiding using deep learning (DL) during echocardiography to reduce foreshortening could improve standardization and reduce variability. We aimed to study the effect of real-time DL guiding during echocardiography on measures of LV foreshortening and inter-observer variability. Methods and results Patients (n = 88) in sinus rhythm referred for echocardiography without indication for contrast were included. All participants underwent three echocardiograms. The first two examinations were performed by sonographers, and the third by cardiologists. In Period 1, the sonographers were instructed to provide high-quality echocardiograms. In Period 2, the DL guiding was used by the second sonographer. One blinded expert measured LV length in all recordings. Tri-plane recordings by cardiologists were used as reference. Apical foreshortening was calculated at the end-diastole. Both sonographer groups significantly foreshortened the LV in Period 1 (mean foreshortening: Sonographer 1: 4 mm; Sonographer 2: 3 mm, both P < 0.001 vs. reference) and reduced foreshortening in Period 2 (2 and 0 mm, respectively. Period 1 vs. Period 2, P < 0.05). Sonographers using DL guiding did not foreshorten more than cardiologists (P ≥ 0.409). Real-time guiding did not improve intra-class correlation (ICC) [LV end-diastolic volume ICC, (95% confidence interval): DL guiding 0.87 (0.77–0.93) vs. no guiding 0.92 (0.88–0.95)]. Conclusion Real-time guiding reduced foreshortening among experienced operators and has the potential to improve image standardization. Even though the effect on inter-operator variability was minimal among experienced users, real-time guiding may improve test–retest variability among less experienced users. Clinical trial registration ClinicalTrials.gov, Identifier: NCT04580095.