Published in

American Astronomical Society, Astrophysical Journal, 2(966), p. 204, 2024

DOI: 10.3847/1538-4357/ad3065

Links

Tools

Export citation

Search in Google Scholar

ReveaLLAGN 0: First Look at JWST MIRI Data of Sombrero and NGC 1052

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present the first results from the Revealing Low-Luminosity Active Galactic Nuclei (ReveaLLAGN) survey, a JWST survey of seven nearby LLAGNs. We focus on two observations with the Mid-Infrared Instrument (MIRI)’s Medium-Resolution Spectrometer of the nuclei of NGC 1052 and Sombrero (NGC 4594/M104). We also compare these data to public JWST data of higher-luminosity AGNs, NGC 7319 and NGC 7469. JWST clearly separates the AGN spectrum from the galaxy light even in Sombrero, the faintest target in our survey; the AGN components have very red spectra. We find that the emission-line widths in both NGC 1052 and Sombrero increase with increasing ionization potential, with FWHM > 1000 km s−1 for lines with ionization potential ≳ 50 eV. These lines are also significantly blueshifted in both LLAGNs. The high-ionization-potential lines in NGC 7319 show neither broad widths nor significant blueshifts. Many of the lower-ionization-potential emission lines in Sombrero show significant blue wings extending >1000 km s−1. These features and the emission-line maps in both galaxies are consistent with outflows along the jet direction. Sombrero has the lowest-luminosity high-ionization-potential lines ([Ne v] and [O iv]) ever measured in the mid-infrared, but the relative strengths of these lines are consistent with higher-luminosity AGNs. On the other hand, the [Ne v] emission is much weaker relative to the [Ne iii] and [Ne ii] lines of higher-luminosity AGNs. These initial results show the great promise that JWST holds for identifying and studying the physical nature of LLAGNs.