Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Materials Interfaces, 18(10), 2023

DOI: 10.1002/admi.202300083

Links

Tools

Export citation

Search in Google Scholar

Engineering of Electromechanical Oxides by Symmetry Breaking

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractComplex oxides exhibit a wide range of fascinating functionalities, such as ferroelectricity, piezoelectricity, and pyroelectricity, which are indispensable for cutting‐edge electronics, energy, and information technologies. The intriguing physical properties of these complex oxides arise from the complex interplay between lattice, orbital, charge, and spin degrees of freedom. Here, it is reviewed how electromechanical properties can be achieved/improved by artificially breaking the symmetry of centrosymmetric oxides via engineering thermodynamic variables such as stress, strain, electric field, and chemical potentials. The mechanisms that have been utilized to break the inherent symmetry of conventional materials that lead to novel functionalities and applications are explored. It is highlighted that access to “hidden phases,” which otherwise are prohibited, could uncover opportunities to host exotic properties, such as piezoelectricity, pyroelectricity, etc. This review not only reports how to engineer intrinsically nonpolar and centrosymmetric oxides for emergent properties, but also has implications for manipulating polar functional materials for better performance.