Published in

Oxford University Press, JAMIA: A Scholarly Journal of Informatics in Health and Biomedicine, 1(31), p. 119-129, 2023

DOI: 10.1093/jamia/ocad202

Links

Tools

Export citation

Search in Google Scholar

Scalable and interpretable alternative to chart review for phenotype evaluation using standardized structured data from electronic health records

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Objectives Chart review as the current gold standard for phenotype evaluation cannot support observational research on electronic health records and claims data sources at scale. We aimed to evaluate the ability of structured data to support efficient and interpretable phenotype evaluation as an alternative to chart review. Materials and Methods We developed Knowledge-Enhanced Electronic Profile Review (KEEPER) as a phenotype evaluation tool that extracts patient’s structured data elements relevant to a phenotype and presents them in a standardized fashion following clinical reasoning principles. We evaluated its performance (interrater agreement, intermethod agreement, accuracy, and review time) compared to manual chart review for 4 conditions using randomized 2-period, 2-sequence crossover design. Results Case ascertainment with KEEPER was twice as fast compared to manual chart review. 88.1% of the patients were classified concordantly using charts and KEEPER, but agreement varied depending on the condition. Missing data and differences in interpretation accounted for most of the discrepancies. Pairs of clinicians agreed in case ascertainment in 91.2% of the cases when using KEEPER compared to 76.3% when using charts. Patient classification aligned with the gold standard in 88.1% and 86.9% of the cases respectively. Conclusion Structured data can be used for efficient and interpretable phenotype evaluation if they are limited to relevant subset and organized according to the clinical reasoning principles. A system that implements these principles can achieve noninferior performance compared to chart review at a fraction of time.