Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Animals, 11(14), p. 1619, 2024

DOI: 10.3390/ani14111619

Links

Tools

Export citation

Search in Google Scholar

Exploring Variability: Inflammation Mediator Levels across Tissues and Time in Poultry Experimentally Infected by the G1a and G6 Genogroups of Infectious Bursal Disease Virus (IBDV)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Infectious bursal disease virus (IBDV) is a significant burden for poultry production and market due to both direct disease and induced immunosuppression. In the present study, the expression of different cytokines in the bursa of Fabricius and thymus was evaluated during a 28-day-long experimental infection with two strains classified in the G1a (Classical) and G6 (ITA) genogroups. Although both strains significantly affected and modulated the expression of different molecules, the G6 strain seemed to induce a delayed immune response or suppress it more promptly. A recovery in the expression of several mediators was observed in the G1a-infected group at the end of the study, but not in the G6 one, further supporting a more persistent immunosuppression. This evidence fits with the higher replication level previously reported for the G6 and with the clinical outcome, as this genotype, although subclinical, has often been considered more immunosuppressive. However, unlike other studies focused on shorter time periods after infection, the patterns observed in this paper were highly variable and complex, depending on the strain, tissue, and time point, and characterized by a non-negligible within-group variability. Besides confirming the strain/genogroup effect on immune system modulation, the present study suggests the usefulness of longer monitoring activities after experimental infection to better understand the complex patterns and interactions with the host response.