Published in

Public Library of Science, PLoS ONE, 11(18), p. e0294859, 2023

DOI: 10.1371/journal.pone.0294859

Links

Tools

Export citation

Search in Google Scholar

Sex-dimorphic expression of extracellular matrix genes in mouse bone marrow neutrophils

Journal article published in 2023 by Cassandra J. McGill ORCID, Collin Y. Ewald ORCID, Bérénice A. Benayoun ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The mammalian innate immune system is sex-dimorphic. Neutrophils are the most abundant leukocyte in humans and represent innate immunity’s first line of defense. We previously found that primary mouse bone marrow neutrophils show widespread sex-dimorphism throughout life, including at the transcriptional level. Extracellular matrix [ECM]-related terms were observed among the top sex-dimorphic genes. Since the ECM is emerging as an important regulator of innate immune responses, we sought to further investigate the transcriptomic profile of primary mouse bone marrow neutrophils at both the bulk and single-cell level to understand how biological sex may influence ECM component expression in neutrophils throughout life. Here, using curated gene lists of ECM components and unbiased weighted gene co-expression network analysis [WGCNA], we find that multiple ECM-related gene sets show widespread female-bias in expression in primary mouse neutrophils. Since many immune-related diseases (e.g., rheumatoid arthritis) are more prevalent in females, our work may provide insights into the pathogenesis of sex-dimorphic inflammatory diseases.