Published in

MDPI, Universe, 8(9), p. 363, 2023

DOI: 10.3390/universe9080363

Links

Tools

Export citation

Search in Google Scholar

Constraining the Thickness of the Galactic Halo through Cosmic-Ray Anisotropy Using the Spatial-Dependent-Propagation Model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The spatial-dependent-propagation (SDP) model with a nearby source works well to reproduce the coevolving features of both cosmic-ray (CR)-nuclei spectra and anisotropy. However, it is well known that the Sun is actually deviating from the galactic disk. This will lead to a dominating anisotropy in the direction perpendicular to the galactic disk, which is discrepant with current observations. Thus, it is necessary to further investigate the effect of the solar offset on anisotropy. In this work, to the best of our knowledge, this is the first time that the combined studies of the solar offset, nuclei spectra, and anisotropy have been performed based on the SDP model. As a result, to reproduce CR spectra and anisotropy, the thickness of the inner halo (ZIH) needs to increase linearly with the displacement of the Sun. We also know that the PeV anisotropy could be used to estimate the value of the diffusion coefficient, thus breaking the degeneracy between the diffusion coefficient and halo thickness. Therefore, it is a good approach to constrain the halo thickness. Moreover, the anisotropy in the PeV energy region, as a new probe, might also shed new light on constraining the solar offset. It is hoped that the anisotropy of the energies from ∼TeV to PeV can be finely measured with the LHAASO experiment, leading to a better understanding of the thick halo.