Published in

Oxford University Press, Glycobiology, 11(33), p. 873-878, 2023

DOI: 10.1093/glycob/cwad081

Links

Tools

Export citation

Search in Google Scholar

The intersection of HIF-1α, O-GlcNAc, and skeletal muscle loss in chronic obstructive pulmonary disease

Journal article published in 2023 by Jinendiran Sekar ORCID, Amy H. Attaway ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Sarcopenia, defined as the loss of muscle mass and strength, is a major cause of morbidity and mortality in COPD (chronic obstructive pulmonary disease) patients. However, the molecular mechanisms that cause sarcopenia remain to be determined. In this review, we will highlight the unique molecular and metabolic perturbations that occur in the skeletal muscle of COPD patients in response to hypoxia, and emphasize important areas of future research. In particular, the mechanisms related to the glycolytic shift that occurs in skeletal muscle in response to hypoxia may occur via a hypoxia-inducible factor 1-alpha (HIF-1α)-mediated mechanism. Upregulated glycolysis in skeletal muscle promotes a unique post-translational glycosylation of proteins known as O-GlcNAcylation, which further shifts metabolism toward glycolysis. Molecular changes in the skeletal muscle of COPD patients are associated with fiber-type shifting from Type I (oxidative) muscle fibers to Type II (glycolytic) muscle fibers. The metabolic shift toward glycolysis caused by HIF-1α and O-GlcNAc modified proteins suggests a potential cause for sarcopenia in COPD, which is an emerging area of future research.