Dissemin is shutting down on January 1st, 2025

Published in

JMIR Publications, JMIR Formative Research, (8), p. e48690, 2024

DOI: 10.2196/48690

Links

Tools

Export citation

Search in Google Scholar

Sodium Intake Estimation in Hospital Patients Using AI-Based Imaging: Prospective Pilot Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Measurement of sodium intake in hospitalized patients is critical for their care. In this study, artificial intelligence (AI)–based imaging was performed to determine sodium intake in these patients. Objective The applicability of a diet management system was evaluated using AI-based imaging to assess the sodium content of diets prescribed for hospitalized patients. Methods Based on the information on the already investigated nutrients and quantity of food, consumed sodium was analyzed through photographs obtained before and after a meal. We used a hybrid model that first leveraged the capabilities of the You Only Look Once, version 4 (YOLOv4) architecture for the detection of food and dish areas in images. Following this initial detection, 2 distinct approaches were adopted for further classification: a custom ResNet-101 model and a hyperspectral imaging-based technique. These methodologies focused on accurate classification and estimation of the food quantity and sodium amount, respectively. The 24-hour urine sodium (UNa) value was measured as a reference for evaluating the sodium intake. Results Results were analyzed using complete data from 25 participants out of the total 54 enrolled individuals. The median sodium intake calculated by the AI algorithm (AI-Na) was determined to be 2022.7 mg per day/person (adjusted by administered fluids). A significant correlation was observed between AI-Na and 24-hour UNa, while there was a notable disparity between them. A regression analysis, considering patient characteristics (eg, gender, age, renal function, the use of diuretics, and administered fluids) yielded a formula accounting for the interaction between AI-Na and 24-hour UNa. Consequently, it was concluded that AI-Na holds clinical significance in estimating salt intake for hospitalized patients using images without the need for 24-hour UNa measurements. The degree of correlation between AI-Na and 24-hour UNa was found to vary depending on the use of diuretics. Conclusions This study highlights the potential of AI-based imaging for determining sodium intake in hospitalized patients.