Published in

Wiley, Advanced Materials, 2024

DOI: 10.1002/adma.202403758

Links

Tools

Export citation

Search in Google Scholar

Transdermal Sensing of Enzyme Biomarker Enabled by Chemo‐Responsive Probe‐Modified Epidermal Microneedle Patch in Human Skin Tissue

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWearable bioelectronics represents a significant breakthrough in healthcare settings, particularly in (bio)sensing which offers an alternative way to track individual health for diagnostics and therapy. However, there has been no notable improvement in the field of cancer, particularly for skin cancer. Here, a wearable bioelectronic patch is established for transdermal sensing of the melanoma biomarker, tyrosinase (Tyr), using a microneedle array integrated with a surface‐bound chemo‐responsive smart probe to enable target‐specific electrochemical detection of Tyr directly from human skin tissue. The results presented herein demonstrate the feasibility of a transdermal microneedle sensor for direct quantification of enzyme biomarkers in an ex vivo skin model. Initial performance analysis of the transdermal microneedle sensor proves that the designed methodology can be an alternative for fast and reliable diagnosis of melanoma and the evaluation of skin moles. The innovative approach presented here may revolutionize the landscape of skin monitoring by offering a nondisruptive means for continuous surveillance and timely intervention of skin anomalies, such as inflammatory skin diseases or allergies and can be extended to the screening of multiple responses of complementary biomarkers with simple modification in device design.