Published in

IOP Publishing, New Journal of Physics, 2024

DOI: 10.1088/1367-2630/ad5906

Links

Tools

Export citation

Search in Google Scholar

Quantum mechanical modeling of the multi-stage Stern–Gerlach experiment conducted by Frisch and Segrè

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The multi-stage Stern–Gerlach experiment conducted by Frisch and Segrè includes two cascaded quantum measurements with a nonadiabatic flipper in between. The Frisch and Segrè experiment has been modeled analytically by Majorana without the nuclear effect and subsequently revised by Rabi with the hyperfine interaction. However, the theoretical predictions do not match the experimental observation accurately. Here, we numerically solve the standard quantum mechanical model, via the von Neumann equation, including the hyperfine interaction for the time evolution of the spin. Thus far, the coefficients of determination from the standard quantum mechanical model without using free parameters are still low, indicating a mismatch between the theory and the experiment. Non-standard variants that improve the match are explored for discussion.