Published in

Wiley, Equine Veterinary Journal, 3(56), p. 484-493, 2023

DOI: 10.1111/evj.13973

Links

Tools

Export citation

Search in Google Scholar

Comparison of cone‐beam and fan‐beam computed tomography and low‐field magnetic resonance imaging for detection of proximal phalanx dorsoproximal osteochondral defects

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBackgroundDorsoproximal osteochondral defects commonly affect the proximal phalanx, but information about diagnosis on computed tomography (CT) and magnetic resonance imaging (MRI) is limited.ObjectivesTo assess CT and MRI diagnoses of osteochondral defects, describe the lesions and compare sensitivity and specificity of the modalities using macroscopic pathology as gold standard.Study designCross‐sectional study.MethodsThirty‐five equine cadaver limbs underwent standing cone‐beam CT (CBCT), fan‐beam CT (FBCT), low‐field MRI and pathological examination. CT and MR images were examined for proximal phalanx dorsomedial and dorsolateral eminence osteochondral defects. Defect dimensions were measured. Imaging diagnoses and measurements were compared with macroscopic examination.ResultsFifty‐six defects were seen over 70 potential locations. On CBCT and FBCT, osteochondral defects appeared as subchondral irregularity/saucer‐shaped defects. On MRI, osteochondral defects were a combination of articular cartilage defect on dorsal images and subchondral flattening/irregularity on sagittal images. Subchondral thickening and osseous short tau inversion recovery hyperintensity were found concurrent with osteochondral defects. Compared with pathological examination, the sensitivity and specificity of diagnosis were 86% (95% confidence interval [95% CI] 75%–93%) and 64% (95% CI 38%–85%) for FBCT; 64% (95% CI 51%–76%) and 71% (95% CI 46%–90%) for CBCT; and 52% (95% CI 39%–65%) and 71% (95% CI 46%–90%) for MRI. Sensitivity of all modalities increased with defect size. Macroscopic defect dimensions were strongly correlated with CBCT (r = 0.76, p < 0.001) and moderately correlated with FBCT and MRI (r = 0.65, p < 0.001). Macroscopic measurements were significantly greater than all imaging modality dimensions (p < 0.001), potentially because macroscopy included articular cartilage pathology.Main limitationsInfluence of motion artefact could not be assessed.ConclusionsOsteochondral defects could be visualised using both CT and MRI with sensitivity increasing with defect size. Diagnostic performance was best using FBCT, followed by CBCT then MRI, but CBCT‐measured defect size best correlated with macroscopic examination. MRI provided useful information on fluid signal associated with defects, which could represent active pathology.