Full text: Download
Background General expectations speculated that there are differences between drop jump (DJ) and horizontal drop jump (HDJ) exercises. While these criteria may be valid, we have yet to find a report that explores these differences in competitive level athletes. Objective The study aimed to compare spatiotemporal variables in the drop jump (DJ) vs. the horizontal drop jump (HDJ) in elite jumpers and sprinters. Methods Sixteen international-level male athletes performed two DJ attempts at different fall heights 0.3, 0.4, and 0.5 m (DJ30, DJ40, and DJ50), and after 2 h, they performed two HDJ attempts (HDJ30, HDJ40, HDJ50). All jumps were performed on a Kistler force plate. The variables analyzed were ground contact time (GCT), flight time (FT), eccentric phase time, concentric phase time, and time to peak concentric force. Results The GCT was found to be significantly shorter in DJ vs. HDJ (Z = 4.980; p = 0.0001; ES = 3.11). FT was significantly lower in DJ30 versus HDJ30 (Z = 4.845; p = 0.0001, d = 3.79), but significantly higher in DJ40 vs. HDJ40 (Z = 4.437; p ≤ 0.0001, d = 3.70) and in DJ50 vs. HDJ50 (Z = 4.549; p ≤ 0.0001, d = 4.72). Conclusions It is concluded that the HDJ requires more time for force production, that the eccentric component requires more time than the concentric and that it is not recommended to use the HDJ over the DJ for reactive purposes. This is the first study that comprehensively compare the differences between DJ and HDJ, which will assist coaches and researchers in the design of future training strategies.