Published in

SAGE Publications, Clinical and Applied Thrombosis/Hemostasis, (29), 2023

DOI: 10.1177/10760296231198036

Links

Tools

Export citation

Search in Google Scholar

The Bone Cement Hypercoagulation Syndrome: Pathophysiology, Mortality, and Prevention

Journal article published in 2023 by Ola E. Dahl, Are Hugo Pripp, Mark Jaradeh ORCID, Jawed Fareed ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Since Charnley introduced acrylic cement to seal metallic hip prostheses in the 1950s, reports of perioperative fatal cardiorespiratory and vascular dysfunctions have been published. Studies on humans and animals have shown neurogenic stimulation and substantial local and systemic activation of coagulation are caused by surgical bone marrow damage and chemical cell destruction by toxic monomeric methyl methacrylate from the implanted cement and other tissue-released substances. Venous blood-borne cell fragments and conjugates of activated cells from the surgical site are sequestered and trapped in the pulmonary microcirculation. A substantial hypercoagulation occurs in the lung circulation. Hypercoagulable blood is passed over to the arterial side and may cause vessel obliteration and organ damage. This process may affect the brain, heart, and kidneys and, through the release of vasoactive substances, introduce hemodynamic imbalances that can lead to fatal outcomes in susceptible populations such as elderly patients with hip fractures. The main underlying pathophysiologic processes leading to these occasionally devastating outcomes are a substantial activation of coagulation and cell destruction caused by the toxic substance released by curing bone cement and several vasoactive substances.