Full text: Unavailable
AbstractClimate change has myriad impacts on ecosystems, but the mechanisms by which it affects individual species can be difficult to pinpoint. One strategy to discover such mechanisms is to identify a specific ecological factor related to survival or reproduction and determine how that factor is affected by climate. Here we used Landsat imagery to calculate water clarity for 127 lakes in northern Wisconsin from 1995 to 2021 and thus investigate the effect of clarity on the body condition of an aquatic visual predator, the common loon (Gavia immer). In addition, we examined rainfall and temperature as potential predictors of water clarity. Body mass tracked July water clarity strongly in loon chicks, which grow chiefly in that month, but weakly in adult males and females. Long‐term mean water clarity was negatively related to chick mass but positively related to adult male mass, suggesting that loons foraging in generally clear lakes enjoy good foraging conditions in the long run but might be sensitive to perturbations in clarity during chick‐rearing. Finally, chick mass was positively related to the density of docks, perhaps because angling removes large fishes and thus boosts the abundance of the small fishes on which chicks depend. Water clarity itself declined strongly from 1995 to 2021, was negatively related to July rainfall, and was positively related to July air temperature. Our findings identified both long‐term and short‐term water clarity as strong predictors of loon foraging efficiency, and suggest that climate change, through water clarity, impacts freshwater ecosystems profoundly. Moreover, our results identified the recent decrease in water clarity as a likely cause of population decline in common loons.