Published in

MDPI, Plants, 6(13), p. 817, 2024

DOI: 10.3390/plants13060817

Links

Tools

Export citation

Search in Google Scholar

Nutritional Characterization of Chilean Landraces of Common Bean

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Common bean (Phaseolus vulgaris L.) is the primary grain legume cultivated worldwide for direct human consumption due to the high nutritional value of its seeds and pods. The high protein content of common beans highlights it as the most promising source of plant-based protein for the food industry. Additionally, landraces of common bean have great variability in nutritional traits, which is necessary to increase the nutritional quality of elite varieties. Therefore, the main objective of this study was to nutritionally characterize 23 Chilean landraces and 5 commercial varieties of common bean to identify genotypes with high nutritional value that are promising for the food industry and for genetic improvement programs. The landrace Phv23 (‘Palo’) was the most outstanding with high concentrations of minerals such as P (7.53 g/kg), K (19.8 g/kg), Mg (2.43 g/kg), Zn (52.67 mg/kg), and Cu (13.67 mg/kg); essential amino acids (364.8 mg/g protein); and total proteins (30.35 g/100 g seed). Additionally, the landraces Phv9 (‘Cimarrón’), Phv17 (‘Juanita’), Phv3 (‘Araucano’), Phv8 (‘Cabrita/Señorita’), and Phv4 (‘Arroz’) had a high protein content. The landrace Phv24 (‘Peumo’) stood out for its phenolic compounds (TPC = 218.1 mg GA/100 g seed) and antioxidant activity (ORAC = 22,167.9 μmol eq trolox/100 g extract), but it has moderate to low mineral and protein concentrations. In general, the concentration of nutritional compounds in some Chilean landraces was significantly different from the commercial varieties, highlighting their high nutritional value and their potential use for the food industry and for genetic improvement purposes.